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要旨

多くの設計・目的パラメターがある複雑なデバイスの
設計において，エンジニアや研究者が制約条件を克服し
複数の目的パラメターを最適化するデバイスのデザイン
セット，即ち設計パラメターのセットを見つける事を可
能にするソフトウェアのツールボックスを開発しました。
このツールボックスを用い，実際に複数の周波数領域で
高い音響透過抑制を可能にする音響メタマテリアルのデ
ザインを試みました。音響メタマテリアルは従来の質量
法則に従う遮音材料に比して軽量な代替材料であり，自
動車や航空など多くの産業で活用されることが期待され
ています。

Abstract

A multi-objective optimization toolbox, which enables the 

engineer and researcher to navigate complex design and 

performance landscapes and find the optimum set of 

designs, has been developed. This toolbox can be applied in 

various disciplines, e.g. optimization of materials formulation 

or processing. In this study, the toolbox was used to design 

acoustic metamaterials with high sound transmission loss at 

multiple frequencies. These metamaterials can be light-

weight alternatives to conventional mass-loaded acoustic 

insulating materials and could find many industrial applica-

tions, such as in the automotive or aviation industries.
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1   Introduction

In the search and design process for a new material 
or component, researchers and engineers are faced 
with the task to pick the right ingredients or param-
eters in order to obtain the optimal performance of 
the new material or design. With the availability of 
increasing amounts of data, the demand for improved 
performance in various fields and increasingly com-
plex designs, this task can overwhelm the researcher. 
A traditional approach based on the researcher’s intu-
ition or based on a simple visualization of the rela-
tionship between one or two design parameters and 
the performance might not yield the optimal design. 
In addition, various performance goals might contra-
dict each other. For instance, a car engine should be 
optimized for maximum fuel mileage, maximum power, 
minimum emissions and maximum reliability (Fig. 1). 
The number of parameters in designing an engine, 
such as displacement, number of cylinders, type of 
fuel is almost endless. The relationships between the 
large number of parameters (design space) and the 
performance space (e.g. fuel mileage, power output) 
are often complex and the parameters are interdepen-
dent. This makes it difficult to find the optimal design. 
In fact, with multiple performance goals (objectives) 
and an unknown weighting between objectives (e.g., 
how much horsepower is the customer willing to sac-
rifice for a 5 % gain in fuel mileage), there is no single 
optimal design that satisfies all objectives. Instead, 
there are multiple conflicting optimal designs which 
lie on the Pareto front (Fig. 3). The definition of the 
design set lying on the Pareto front (the Pareto set) is 
that there are no designs that offer improved perfor-
mance in all performance directions. Those offering 
improved performance in one direction (e.g. engine 
power) have worse performance in another direction 
(e.g. fuel mileage).

These types of optimization problems are called 
multi-objective optimizations and are encountered in 
various disciplines, for instance formulation of poly-
mer materials (e.g. type and ratio of ingredients vs. 
strength and cost), materials processing (e.g. tem-
perature and time vs. strength and throughput), or 
component design (e.g. wall thickness and material 
type vs. stiffness and weight) [1]. In order to navigate 
these complex problems and to accelerate the dis-
covery of optimal designs, we conducted an open 
innovation research project with the Computational 
Fabrication group under Professor Matusik at 
Massachusetts Institute of Technology, Computer 

Science and Artificial Intelligence Laboratory and 
developed a toolbox that enables the engineer to eas-
ily tackle difficult optimization problems (Fig. 2). This 
optimization toolbox was applied to the design of 
acoustic metamaterials using both simulations and 
experiments. These acoustic metamaterials offer out-
standing noise attenuation at certain frequencies 
without the heavy weight of conventional acoustic 
insulating materials. Furthermore, acoustic metama-
terials can be tailored to deliver optimal performance 
for a given use case [2].

Fig. 1   Illustration of design space and performance space, exemplified 
on a combustion engine vehicle. The four symbols represent dif-
ferent engine designs. 

Fig. 2  Flow chart of optimization toolbox. 
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2   Acoustic Metamaterials

Metamaterials are artificial materials whose prop-
erties are determined by their engineered structures, 
not by the properties of the constituent materials. 
Metamaterials are designed to manipulate waves, e.g. 
electromagnetic waves (e.g. light, radio signal) or 
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acoustic waves (e.g. sound, ultrasound). They can 
be designed to bend, focus, reflect or absorb waves. 
Acoustic metamaterials manipulate sound waves and 
typically use membranes or resonators. We have 
used the optimization toolbox to design an acoustic 
metamaterial that can attenuate road noise emanat-
ing from a tire, based on a starting material found in 
the literature [3]. It is light weight and can be installed 
in car wheel wells or in other locations in the vehicle. 
It consists of a honeycomb structure with membranes 
and can be 3D-printed. It is lighter than conventional 
mass-loaded acoustic insulating materials. Compared 
to conventional fabrication technologies (e.g. extru-
sion, injection molding), 3D-printing enables com-
plex designs without penalizing cost or manufactur-
ability and thus represents an excellent use case for 
optimization over a large design space. With multi-
material 3D-printing, as applied in this project, the 
design space is enlarged even further.

A typical tire road noise spectrum has two maxima 
at 800 Hz and 1600 Hz [4]. For that reason, we chose 
to optimize the design for two objectives: Maximize 
the sound transmission loss at 800 Hz and 1600 Hz. 
We started with a simple metamaterial with a honey-
comb-membrane structure based on the state of the 
art (Fig. 4) and computed its performance using 
COMSOL Multiphysics simulation. We then per-
formed a sensitivity analysis in order to identify 
design parameters which have the most effect on the 
performance (e.g. cell size, cell thickness, membrane 
stiffness). We optimized these parameters in order to 
obtain optimal performance for the road noise use 
case described above. 

We connected the optimization toolbox to the 
COMSOL simulation software. In an iterative cycle, 
the optimization tool, based on the previous designs 
and their performances, proposes designs that likely 
offer improved performance, and the simulation soft-
ware validates the performance of the proposed 
designs. More precisely, the optimization tool uses 
Gaussian processes in order to model the relationship 
between the design space and each objective. Then, 
Thompson sampling efficient multi- objective optimi-
zation (TSEMO) algorithm is used to determine the 
designs that most likely yield improved performance 
for each objective [5]. Thompson sampling considers 
the probability distribution of performances for each 
design. Lastly, a genetic algorithm picks the designs 
that yields the most overall improvement after com-
bining all objectives. These designs are then pro-
posed to the simulation software. After validation of 

the design by the simulation software (or by experi-
ment), this cycle is repeated about 200 times, depend-
ing on the complexity of the design and the cost to 
evaluate the performance. Finally, a Pareto set of 
about 10 designs is obtained and the engineer can 
decide which of those designs is best for the given 
application. A comparison between TSEMO-guided 
performance optimization and random search shows 
that almost all points on the approximate Pareto front 
were found by TSEMO search and only few by ran-
dom search (Fig. 3).

After finding the optimal designs in the simple 
design space, we allowed the simulation to explore 
more complex designs beyond regular hexagonal 
honeycombs. This led to even better performance. 
Fig. 5 shows the performance of various designs. 
Designs optimized for a single objective (either 800 
Hz or 1600 Hz) typically yield poor performance at 
the other frequency. Simple design search approaches, 
which only optimize one design parameter while 
keeping all others constant, also show poor perfor-
mance. Similarly, reducing the complexity by limiting 
the design to regular hexagons only, showed subopti-
mal performance. In contrast, using the new toolbox 
with multi-objective optimization yielded designs that 
perform well at both objectives.
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Fig. 3   Optimization of an acoustic metamaterial with the optimization 
toolbox. The performance space after various iterations is shown, 
comparing TSEMO optimization with random search. The approx-
imate Pareto front is indicated by circles in the last graph. STL = 
sound transmission loss. 
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3   Conclusion

An optimization toolbox that allows the researcher 
and engineer to find optimal solutions to complex 
problems has been developed as a part of the open 
innovation collaborative research project between 
Konica Minolta Laboratory USA, Research Division 
and Massachusetts Institute of Technology, Computer 
Science and Artificial Intelligence Laboratory. We 
successfully applied this tool to 3D-printed acoustic 
metamaterials. This multi-objective optimization pro-
cess will accelerate the design process in various 
disciplines, such as single-material and multi-mate-
rial 3D-printing, materials formulation and materials 
processing.
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Fig. 4   Sketch of the acoustic metamaterials. a) Perspective projection of 
the material with regular hexagons. Blue indicates elastic mem-
branes, grey indicates rigid cell walls. b) Honeycomb structure 
with regular periodic unit cells consisting of seven irregular hexa-
gon cells. a, b, c, d are design parameters.  

Fig. 5   Sound transmission loss (STL) performances of various optimized 
acoustic metamaterials, compared to the starting material. Better 
performance can be achieved with more complex designs. 




